Jacqueline H. Chen

Jacqueline H. Chen, Distinguished Member of Technical Staff, Reacting Flows Department

Jacqueline H. Chen,
Distinguished Member of Technical Staff,
Reacting Flows Department

Bio

Jacqueline H. Chen is a Distinguished Member of Technical Staff at the Combustion Research Facility at Sandia National Laboratories.  She has contributed broadly to research in petascale direct numerical simulations (DNS) of turbulent combustion focusing on fundamental turbulence-chemistry interactions. These benchmark simulations  provide fundamental insight into combustion processes and are used by the combustion modeling community to develop and validate turbulent combustion models for engineering CFD simulations.  In collaboration with computer scientists and applied mathematicians she is the founding Director of the Center for Exascale Simulation of Combustion in Turbulence (ExaCT).  She leads an interdisciplinary team to co-design DNS algorithms, domain-specific programming environments,  scientific data management and in situ uncertainty quantification and analytics, and architectural simulation and modeling with combustion proxy and production applications.  She received the DOE INCITE Award in 2005, 2007, 2008-2014, the Asian American Engineer of the Year Award in 2009, and the Sandia OE Adams Award in 2012.  She is a member of the DOE Advanced Scientific Computing Research Advisory Committee (ASCAC) and Subcommittees on Exascale Computing, and Synergies of Big Data and Exascale.  She is the editor of Flow, Turbulence and Combustion, the co-editor of the Proceedings of the Combustion Institute, volumes 29 and 30, and is a member of the Board of Directors of the Combustion Institute.

Research Interests

My areas of research interests are in the development and application of massively parallel petascale direct numerical simulations (DNS) of turbulent combustion with complex chemistry. These DNS are used to understand fundamental chemistry-turbulence interactions in combustion, and to develop and validate predictive combustion models ultimately used to design efficient and clean engines reliably burning a diverse range of fuels, from bio-derived and synthesized fuels to fossil fuels from evolving feeds.  I have used DNS to investigate phenomena including turbulent flame propagation, partially-premixed and triple flame structure, hydrodynamic and diffusive-thermal flame instabilities, lifted flame stabilization, autoignition, extinction and reignition, pollutant formation, soot production and differential transport, premixed flame boundary layer flashback in turbulent channel flow, reactive scalar mixing, and small scale energy transfer in turbulent premixed flames. Many of the fundamental DNS studies are relevant to the engineering design of fuel injection systems for staged gas turbine combustors that are intrinsically flashback safe and in developing strategies for controlling the pressure rise rate in fuel efficient premixed compression ignition engines. At the petascale, the DNS have been performed at conditions directly comparable to compact laboratory experiments and with sufficient chemical realism to differentiate fuel chemistry effects on critical finite-rate phenomena.  The DNS benchmark data are increasingly used by the turbulent combustion modeling community for validation.

In the past ten years the increasing complexity of high performance computing hardware (currently, multi-core hybrid architectures constrained by power considerations) has driven my research in computational combustion to be more aligned with computer science research. In this regard, I am the founding Director of the Center for Exascale Simulation of Combustion in Turbulence (ExaCT), a multi-disciplinary, multi-institutional Center of computational scientists, applied mathematicians and computer scientists. ExaCT is focused on the iterative co-design of the entire software stack–from combustion DNS, analytics and UQ algorithms to programming environments, runtimes and operating system to computer hardware–allowing effective combustion simulation on future exascale systems. I am also interested in the development and application of in situ topological analytics tools used to extract and track salient intermittent combustion and flow features, thereby vastly reducing the amount of data written to persistent storage.

Education

  • Ohio State University, Mechanical Engineering, B.S. 1981
  • University of California, Berkeley, Mechanical Engineering, M.S. 1982
  • Stanford University, Mechanical Engineering , Ph.D 1989

Awards, Honors and Memberships

  • Sandia Ph.D. Doctoral Study Program (DSP) Fellowship, 1986-1989
  • University of California Distinguished Research Scientist Award, Irvine, 1996
  • Sandia Employee Recognition Award for Technical Excellence, 1998
  • Asian American Engineer of the Year Award, 2009
  • O.E. Adams Award for Excellence in Combustion Science, 2012
  • Member, Board of Directors of Combustion Institute, 2007-2018
  • Co-Chair, Local Organizing Committee for 35th International Symposium on Combustion, San Francisco, 2014
  • Member, DOE Office of Advanced Scientific Computing Advisory Committee, 2008-present
  • National Academy of Science Committee on Cyberinfrastructure for Combustion Science Research, 2010:
    • Subcommittee member on Exascale Computing
    • Subcommittee member on Big Data Synergies with Exascale Computing
    • Subcommittee member on ASCR Facilities
  • Chair Executive Users Council National Center for Computational Sciences Oak Ridge National Lab 2009-2010
  • Member, External Advisory Board, Oak Ridge National Laboratory, Computational and Computing Sciences Directorate 2012-present
  • Member of Steering Committee for DOE Combustion Energy Frontier Research Center, 2009-present
  • Editor of Flow, Turbulence and Combustion, 2011-present
  • Co-Editor of Proceedings of the Combustion Institute, Volumes 29 and 30, 2008, 2010
  • Editorial Board of Proceedings of Combustion Institute 2008-present
  • Editorial Board of Computational Science and Discovery 2007-present
  • Editorial Board of Progress in Energy and Combustion 2007-present
  • Editorial Board of Combustion and Flame, 2004-2008
  • DOE INCITE Awards 2005, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014
  • DOE Advanced Leadership Computing Challenge (ALCC) Award 2012
  • ORNL 250 Tflop and 1 Pflop  Transition-to-Operations Awards
  • ORNL CAARS Program for Application Readiness Award for 20 Pflop Titan 2012-2013.
  • Keynote: Third International Conference on Turbulence Interactions, 2012
  • Plenary: 33rd International Symposium on Combustion, Beijing, 2010
  • Plenary: Sixth U.S. National Combustion Meeting, Ann Arbor, 2009
  • Plenary: International Conference on High Performance Computing and Communications, 2009
  • Plenary: Twelfth International Conference on Numerical Combustion, Monterey, 2008
  • Masterworks Plenary: Supercomputing ‘06, 2006
  • Plenary: SIAM Conference on Parallel Processing for Scientific Computing, Portland, 2014
  • Plenary: International Conference on Scientific Computing at Extreme Scale, Shanghai, China, 2014

Selected Publications & Patents

Refereed Combustion and Fluids Journal Articles

  1. Krisman, A., Tang, J., Hawkes, E. R., Lignell, D., Chen, J. H. (2014) “A DNS evaluation of mixing models for transported PDF modelling of turbulent nonpremixed flames,” in press, Combustion and Flame.
  2. Gruber, A., Chen, J. H., (2014) “Direct numerical simulation of laminar flame-wall interaction for a novel H2-selective membrane / injector configuration”  in press, International Journal of Hydrogen Energy.
  3. Bhagatwala, A., Lu, T., and Chen, J. H., (2014) “Direct numerical simulations of HCCI/SACI with ethanol,” in press, Combustion and Flame, http://dx.doi.org/10.1016/j.combustflame.2013.12.027.
  4. Chatakonda, O., Hawkes, E. R., Aspden, A., Kerstein, A. R., Kolla, H.,  Chen, J. H., (2013) “On the fractal characteristics of low Damkohler number flames,” Combustion and Flame, 160, 2422-2433.
  5. Yang, Y., Wang, H., Pope, S. B., Chen, J. H., (2013) Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame. Proc. Comb. Inst., 34, 1241–1249.
  6. Yang, Y.,  Pope, S. B., Chen, J. H., (2013) Empirical low-dimensional manifolds in composition space. Combustion and Flame, 160 (10), 1967-1980.
  7. Kaul, C. M.; Raman, V.; Knudsen, E.; Richardson, E. S.; Chen, J. H., (2013) Large eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate. Proc. Comb. Inst., 1289–1297.
  8. Valiev D.M., Zhu M., Bansal G., Kolla H., Law C.K., Chen J.H., (2013), Pulsating instability of externally forced premixed counterflow flame, Combustion and Flame 160(2), 285-294.
  9. Zhang, H., Hawkes, E.R., Chen, J.H., Kook, S., (2013), A numerical study of the autoignition of dimethyl ether with temperature inhomogeneities, Proceedings of the Combustion Institute 34(1), pp. 803-812.
  10. Chakraborty, N., Kolla, H., Sankaran, R., Hawkes, E.R., Chen, J.H., (2013), Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: direct numerical simulation-based validation, Proceedings of the Combustion Institute 34(1), pp. 1151-1162.
  11. Yoo C.S., Luo Z., Lu T., Kim H., Chen J.H., (2013), A DNS study of ignition characteristics of a lean iso-octane/air mixture under HCCI and SACI conditions, Proceedings of the Combustion Institute 34(2) pp. 2985-2993.
  12. Kolla, H., Grout, R., Gruber, A., Chen, J. H., (2012) Mechanisms of flame stabilization and blowout in a reacting turbulent hydrogen jet in cross-flow. Combust. Flame, 159 (8), 2755-2766.
  13. Gruber, A.; Chen, J. H.; Valiev, D.; Law, C. K., (2012) Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech., 709, 516-542.
  14. Shan R., Yoo C.S., Chen J.H., Lu T., (2012), Computational diagnostics for n-heptane flames with chemical explosive mode analysis, Combustion and Flame 159(10), pp. 3119-3127.
  15. Grout R.W., Gruber A., Kolla H., Bremer P.-T., Bennett J.C., Gyulassy A., Chen J.H., (2012), A direct numerical simulation study of turbulence and flame structure in transverse jets analysed in jet-trajectory based coordinates, Journal of Fluid Mechanics 706(10), pp. 351-383.
  16. Richardson E.S., Chen J.H., (2012), Application of PDF mixing models to premixed flames with differential diffusion, Combustion and Flame 159(7), pp. 2398-2414.
  17. Knudsen E., Richardson E.S., Doran E.M., Pitsch H., Chen J.H., (2012), Modeling scalar dissipation and scalar variance in large eddy simulation: Algebraic and transport equation closures, Physics of Fluids 24(5), Art. No. 055103.
  18. Wei J., Yu H., Grout R., Chen J. H., Ma K.-L., (2012), Visual analysis of particle behaviors to understand combustion simulations, IEEE Computer Graphics and Applications 32(1), pp. 22-33.
  19. Luo Z., Yoo C.S., Richardson E.S., Chen J.H., Law C.K., Lu T., (2012), Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow, Combustion and Flame 159(1), pp. 265-274.
  20. Hawkes, E.R., Chatakonda, O., Kolla, H., Chen, J.H., (2012), A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence, Combustion and Flame 159(8), pp. 2690–2703.
  21. Bennett, J.C., Krishnamoorthy, V., Liu, S., Grout, R.W., Hawkes, E.R., Chen, J.H., Shepherd, J., Pascucci, V., Bremer, P.-T., (2011), Feature-based statistical analysis of combustion simulation data, IEEE Transactions on Visualization and Computer Graphics 17(12), pp. 1822-1831.
  22. Yoo C.S., Lu T., Chen J.H., Law C.K., (2011), Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study, Combustion and Flame 158(9), pp. 1727-1741.
  23. Lignell D.O., Chen J.H., Schmutz H.A., (2011), Effects of Damköhler number on flame extinction and reignition in turbulent non-premixed flames using DNS, Combustion and Flame 158(5), pp. 949 – 963.
  24. Grout R.W., Gruber A., Yoo C.S., Chen J.H., (2011), Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow, Proceedings of the Combustion Institute 33(1), pp. 1629 – 1637.
  25. Hawkes, E.R., Sankaran, R., Chen, J.H., (2011), Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements, Proceedings of the Combustion Institute 33(1), pp. 1447-1454.
  26. Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H., (2011), An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition, Proceedings of the Combustion Institute 33(1), pp. 1515-1522.
  27. Wang, L., Hawkes, E.R., Chen, J.H., (2011), Flame edge statistics in turbulent combustion, Proceedings of the Combustion Institute 33(1), pp. 1439-1446.
  28. Yoo C.S., Richardson E.S., Sankaran R., Chen J.H., (2011), A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow, Proceedings of the Combustion Institute 33(1), pp. 1619-1627.
  29. Chen J.H., (2011), Petascale direct numerical simulation of turbulent combustion – Fundamental insights towards predictive models, Proceedings of the Combustion Institute 33(1), pp. 99-123.   (Plenary Paper)
  30. Richardson E.S., Granet V.E., Eyssartier A., Chen J.H. (2010), Effects of equivalence ratio variation on lean, stratified methane-air laminar counterflow flames, Combustion Theory and Modelling 14(6), pp. 775-792.
  31. Yu H., Wang C., Grout R.W., Chen J.H., Ma K.-L., (2010), In situ visualization for large-scale combustion simulations, IEEE Computer Graphics and Applications 30(3), pp. 45-57.
  32. Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H., (2010), Turbulent flame–wall interaction: a direct numerical simulation study, Journal of Fluid Mechanics 658, pp. 5-32. [Featured in Focus on Fluids]
  33. Lu T, Yoo, C.S., Chen, J.H., Law, C.K., (2010), Three-dimensional direct numerical simulation of a turbulent lifted hydrogen/air jet flame in heated coflow: explosive mode analysis, Journal of Fluid Mechanics 652, pp. 453-481.
  34. Richardson, E.S., Sankaran, R., Grout, R.W., Chen, J.H., (2010), Numerical analysis of reaction-diffusion effects in turbulent premixed methane-air combustion, Combustion and Flame 157, pp. 506-515.
  35. Lee, U., Yoo, C.S., Chen, J.H., Frank, J.H., (2010), Effect of NO on extinction and reignition of vortex-perturbed hydrogen flames, Combustion and Flame 157(2), pp. 217-229.
  36. Yoo, C.S., Sankaran, R., Chen, J.H., (2009), Three-dimensional direct numerical simulation of a turbulent lifted hydrogen/air jet flame in heated coflow: stabilization and structure, Journal of Fluid Mechanics 460, pp. 453-48.
  37. Hawkes, E.R., Sankaran, R., Chen, J.H., Kaiser, S.A., Frank, J.H., (2009), An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames, Proceedings of the Combustion Institute 32(1), pp. 1455-1463.   
  38. Bisetti, F., Chen, J.Y., Chen, J.H., Hawkes, E.R., (2009), Differential diffusion effects during the ignition of a thermally stratified premixed hydrogen-air mixture subject to turbulence, Proceedings of the Combustion Institute 32(1), pp. 1465-1472.
  39. Richardson, E.S., Yoo, C.S., and Chen, J.H., (2009), Analysis of second-order conditional moment closure applied to an autoignitive lifted hydrogen jet flame, Proceedings of the Combustion Institute 32(2) pp. 1695-1703.
  40. Lee, U.D., Yoo, C.S., Chen, J.H., and Frank, J.H., (2009), Effects of H2O and NO on extinction and reignition of vortex-perturbed hydrogen counterflow flames, Proceedings of the Combustion Institute 32(1) pp. 1059-1066.
  41. Lignell, D., Hewson, J.C. and Chen, J.H., (2009), A priori analysis of conditional moment closure modeling of a temporal ethylene jet flame with soot formation using DNS, Proceedings of the Combustion Institute 32(1):1491-1498.
  42. Yoo, C.S.,  Chen, J.H., Frank, J.H., (2009), A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow, Combustion and Flame 156(1) 140-151.
  43. Lu, T., Law, C.K., Yoo, C.S., and Chen, J.H., (2009), Dynamic stiffness removal for direct numerical simulation, Combustion and Flame 156(8), pp. 1542-1551.
  44. Chen, J.H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorski, N., Sankaran, R., Shende, S., Yoo, C.S., (2009), Terascale direct numerical simulations of turbulent combustion using s3d, Computational Science and Discovery 2.
  45. Bisetti, F., Chen, J.Y., Hawkes, E.R., Chen, J.H., (2008), Probability density function treatment of turbulence/chemistry interactions during the ignition of temperature stratified mixture for application to HCCI engines modelling, Combustion and Flame 155, pp. 571-584.
  46. Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S., (2008), The effects of strain rate and curvature on surface density function transport in turbulent premixed methane-air and hydrogen-air flames: a comparative study, Combustion and Flame 154, pp. 259-280.
  47. Lignell, D., Chen, J.H., and Smith, P.J., (2008), Three-dimensional DNS of soot formation and transport in a temporally-evolving non-premixed ethylene jet flame, Combustion and Flame 155, pp. 316-333.
  48. Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H., (2007), Scalar mixing in direct numerical simulation of temporally evolving plane jet flames with skeletal CO/H2 kinetics, Proceedings of the Combustion Institute 31, pp. 1633-1640.
  49. Sankaran, R., Hawkes, E.R., Chen, J.H., Lu, T., Law, C.K., (2007), Structure of a spatially developing lean methane-air Bunsen flame, Proceedings of the Combustion Institute 31, pp. 1291-1298.
  50. Cook, D.J., Pitsch, H., Chen, J.H., Hawkes, E.R., (2007), Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines, Proceedings of the Combustion Institute 31, pp. 2903-2911.
  51. Lignell, D.O., Chen, J.H., Smith, P.J., Lu, T., Law, C.K., (2007), The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation, Combustion and Flame 151, pp. 2-28.
  52. Sutherland, J.C., Smith, P.J., Chen, J.H. (2007), A quantitative method for a priori evaluation of combustion reaction models, Combustion Theory and Modelling 11(2), pp. 287-303.
  53. Akiba, H., Ma, K.-L., Chen, J.H., Hawkes, E.R., (2007), Visualizing multivariate volume data from turbulent combustion simulations, Computing in Science and Engineering 9(2), pp. 76-83.
  54. Liu, S., Hewson, J.C., Chen, J.H., (2006), Nonpremixed n-heptane autoignition in unsteady counterflow, Combustion and Flame 145, pp. 730-739.
  55. Chen, J.H., Hawkes, E.R., Sankaran, R., Im, H.G., (2006), Direct Numerical Simulation of ignition front propagation in a constant volume with temperature inhomogeneities, Part I: Fundamental analysis, Combustion and Flame 145, pp. 128-144. 
  56. Hawkes, E.R., Sankaran, R., Pébay, P.P., Chen, J.H., (2006), Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities, Part II: Parametric study and multi-zone model predictions, Combustion and Flame 145, pp. 145-159. 
  57. Hawkes, E.R., Chen, J.H., (2005), Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations, Combustion and Flame 144, pp. 112-125. 
  58. Hawkes, E.R., Chen, J.H., (2005), Evaluation of models for flame stretch due to curvature in the thin reaction zones regime,Proceedings of the Combustion Institute 30,pp. 647-655.
  59. Sankaran, R., Im, H.G., Hawkes. E.R., Chen, J.H., (2005), The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture, Proceedings of the Combustion Institute 30, pp. 875-882.
  60. Sutherland, J.C., Smith, P. J., Chen, J.H., (2005), Quantification of differential diffusion in nonpremixed systems,Combustion Theory and Modeling 9: 365-383.
  61. Seiser, R., Frank, J.H., Liu, S., Chen, J.H., Sigurdsson, R. J., Seshadri, K., (2005), Ignition of hydrogen in unsteady nonpremixed flows, Proceedings of the Combustion Institute 30: 423-430.
  62. Hawkes, E.R., Chen, J.H., (2004), Direct Numerical Simulation of hydrogen enriched lean premixed methane-air flames, Combustion and Flame 138(3), pp. 242-258.
  63. Liu S., Hewson J.C., Chen J.H., Pitsch H., (2004), Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow, Combustion and Flame 137(3).
  64. Echekki T., Chen J.H., (2004), Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures, Combustion and Flame 134(3).
  65. Echekki, T. and Chen, J.H., (2003), Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures, Combustion and Flame, 134:169-191.
  66. Echekki, T. and Chen, J.H., (2002) High-temperature combustion in autoigniting non-homogeneous hydrogen-air mixtures, Proceedings of the Combustion Institute, 29: 2061-2068.
  67. Im, H.G. and Chen, J.H., (2002) Direct numerical simulation of turbulent premixed flame interaction, Combustion and Flame, 131:246-258.
  68. Mason, S.D., Chen, J.H., Im, H.G. (2002) Effects of unsteady scalar dissipation rate on ignition of non-premixed hydrogen/air mixtures in counterflow, Proceedings of the Combustion Institute, 29: 1629-1636.
  69. Im, H.G. and Chen, J.H. (2001) Effects of flow strain on triple flame propagation, Combustion and Flame 126: 1384-1392.
  70. Im, H.G. and Chen, J.H., (2000) Effects of Flow Transients on the Burning Velocity of Hydrogen-Air Premixed Flames, Proceedings of the Combustion Institute, 28:1833-1840.
  71. Im, H.G. and Chen, J.H., (2000) Stretch Effects on the Burning Velocity of Turbulent Premixed Hydrogen-Air Flames, Proceedings of the Combustion Institute, 28: 211-218.
  72. T. Echekki and J. H. Chen, Analysis and Computation of the Different Contributions to Flame Propagation in Turbulent Premixed Methane-Air Flames,” Combust. Flame, 118, No. 12(1999).
  73. Im, H.G. and Chen, J.H., (1999) Structure and Propagation of Triple Flames in Partially-Premixed Hydrogen/Air Mixtures, Combustion and Flame, 119, 436.
  74. Im, H.G., Chen, J.H and Chen, J.Y., (1999) Chemical Response of Methane/Air Diffusion Flames to Unsteady Strain Rate, Combustion and Flame, 118, 204.
  75. Chen, J.H.,  Echekki, T. and Kollmann, W. (1999) The Mechanism of Two-Dimensional Pocket Formation in Lean Premixed Methane-Air Flames with Implications to Turbulent Combustion, Combustion and Flame, 116,15.
  76. Chen, J.H.and Im, H. G., (1998) Correlation of Flame Speed with Stretch in Turbulent Premixed Methane-Air Flames, Proceedings of the Combustion Institute, 27: 819-826.
  77. Im, H.G., Chen, J.H. and Law, C.K. (1998) Ignition of Hydrogen/Air Mixing Layer in Turbulent Flows, Proceedings of the Combustion Institute, 27: 1047-1056.
  78. Peters, N., Terhoeven, P., Chen, J.H. and Echekki, T., (1998) Statistics of Flame Displacement Speeds from Computation of 2-D Unsteady Methane-Air Flames, Proceedings of the Combustion Institute, 27: 833-839.
  79. Echekki, T. and Chen, J.H., (1998) Structure and Propagation of Methanol-Air Triple Flames, Combustion and Flame, 114: 231-245.
  80. Kollmann, W. and Chen, J.H., (1998) Pocket Formation and Flame Surface Density Equation, Proceedings of the Combustion Institute, 27: 927-934.
  81. Kennedy, C.A. and Chen, J.H. (1998) Mean Flow Effects on the Linear Stability of Compressible Planar Jets, Physics of Fluids, 10 3.
  82. Gran, I.R., Echekki, T. and Chen, J.H. (1996) Negative Flame Speed in an Unsteady 2-D Premixed Flame: A Computational Study, Proceedings of the Combustion Institute, 26: 323-330.
  83. Echekki, T., Chen, J.H., Gran, I.R. (1996) The Mechanism of Mutual Annihilation of Stoichiometric Premixed Methane-Air Flames,” Proceedings of the Combustion Institute, 26:855-864.
  84. Echekki, T. and Chen, J.H. (1996) Unsteady Strain Rate and Curvature Effects in Premixed Methane-Air Flames, Combustion and Flame, 106: 184-202
  85. Mahalingam, S., Chen, J.H. and Vervisch, L. (1995) Finite-Rate Chemistry and Transient Effects in Simulations of Turbulent Non-premixed Flames,  Combustion and Flame, 102: 285.
  86. Chen, J.H., Lienau, J.J. and Kollmann, K. (1995) Numerical Simulation of Low Reynolds Number Turbulence in Round Jets, Turbulent Shear Flows 9, ed. F. Durst (Springer-Verlag, Heidelberg) pp. 141-152.
  87. Chen, J.H., Cantwell, B.J.  and Mansour, N.N., (1990) The Effect of Mach number on the Stability of a Plane Supersonic Wake, Physics of Fluids A,  2: 984-1004.
  88. Chen, J.H., (1992) The effect of compressibility on conserved scalar entrainment in a plane free shear layer, Turbulent Shear Flows 8, (Springer Verlag, Heidelberg) pp. 297-311.
  89. Kollmann, W. and Chen, J.H., (1994) Dynamics of the flame surface area in turbulent non-premixed combustion, Proceedings of the Combustion Institute 25:1091-1098
  90. Chan, W. L.,  Kolla, H. K. , Chen, J. H., Ihme, M., “Assessment of model-assumptions and budget-terms of the unsteady flamelet equations for a turbulent reacting jet-in-cross-flow,” in press Combustion and Flame, (2014).
  91. Gruber, A., Salimath, P., and Chen, J. H., “Direct numerical simulation of laminar flame-wall interaction for a novel H2-selective membrane / injector configuration” (2014) in press, International Journal of Hydrogen Energy http://dx.doi.org/10.1016/j.ijhydene.2014.01.148.
  92. Bhagatwala, A., Lu, T., and Chen, J. H., (2014) “Direct numerical simulations of HCCI/SACI with ethanol,” in press, Combustion and Flame http://dx.doi.org/10.1016/j.combustflame.2013.12.027

Refereed Computer Science Articles

  1. Rodero, I., Gamell, M. Parashar, M., Landge, A., Gyulassy, A., Bennett, J, Kolla, H., Chen, J. H., McCormick, P., Pakin, S., Bremer, PT., Pascucci, V., (2013) “Exploring power behaviors and trade-offs of in situ data analytics,” SC13, ACM 978-1-4503-2378-9/13/11, http://dx.doi.org/10.1145/2503210.2503303.
  2. Kumar, S., Saha, A., Vishwanath, V., Carns, P., Schmidt, J., Scorzelli, G., Kolla, H. , Grout, R., Latham, R., Ross, R., Papka, M., Chen, J. H., Pascucci, V., (2013), “Characterization and Modeling of PIDX Parallel I/O for Performance Optimization,” SC13, ACM 978-1-4503-2378-9/13/11, http://dx.doi.org/10.1145/2503210.2503252.
  3. Bennett, J.C.,  Abbasi, H., Bremer, P., Grout, R.W., Gyulassy, A., Jin, T., Klasky, S., Kolla, H., Parashar, M., Pascucci, V., Pebay, P.,  Thompson, D., Yu, H., Zhang, F., and Chen. J.H., (2012) Combining in-situ and in-transit processing to enable extreme-scale scientific analysis. In ACM/IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis SC12.
  4. Jenkins J., Arkatkar I., Lakshminarasimhan S., Shah N., Schendel E.R., Ethier S., Chang C.-S., Chen J.H., Kolla H., Klasky S., Ross R., Samatova N.F., (2012), Analytics-driven lossless data compression for rapid in-situ indexing, storing, and querying, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7447(2), pp. 16-30.
  5. Gong Z., Lakshminarasimhan S., Jenkins J., Kolla H., Ethier S., Chen J., Ross R., Klasky S., Samatova N.F., (2012), Multi-level layout optimization for efficient spatio-temporal queries on ISABELA-compressed data, Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS 2012, pp. 873-884.
  6. Hsu W.-H., Wang C.-F., Ma K.-L., Yu H., Chen J.H., (2012), A job scheduling design for visualization services using GPU clusters, Proceedings – 2012 IEEE International Conference on Cluster Computing, CLUSTER 2012, pp. 523-533.
  7. Gong Z., Rogers T., Jenkins J., Kolla H., Ethier S., Chen J., Ross R., Klasky S., Samatova N.F., (2012), MLOC: Multi-level layout optimization framework for compressed scientific data exploration with heterogeneous access patterns, Proceedings of the International Conference on Parallel Processing ICPP 2012, pp. 239-248.
  8. McLendon III W.C., Chen J., Bansal G., Kolla H., Bremer P.-T., Bennett J.C., (2012), On the use of graph search techniques for the analysis of extreme-scale combustion simulation data, IEEE Symposium on Large Data Analysis and Visualization 2012, LDAV 2012 – Proceedings, pp. 57-63.
  9. Schendel E.R., Jin Y., Shah N., Chen J., Chang C.S., Ku S.-H., Ethier S., Klasky S., Latham R., Ross R., Samatova N.F., (2012), ISOBAR preconditioner for effective and high-throughput lossless data compression, Proceedings – International Conference on Data Engineering, ICDE 2012, pp. 138-149.
  10. Schendel E.R., Pendse S.V., Jenkins J., Boyuka II D.A., Gong Z., Lakshminarasimhan S., Liu Q., Kolla H., Chen J., Klasky S., Ross R., Samatova N.F., (2012), ISOBAR hybrid compression-I/O interleaving for large-scale parallel I/O optimization, HPDC ’12 – Proceedings of the 21st ACM Symposium on High-Performance Parallel and Distributed Computing, HPDC ’12, pp. 61-72.
  11. Wei J., Yu H., Chen J.H., Ma K.-L. (2011), Parallel clustering for visualizing large scientific line data, 1st IEEE Symposium on Large-Scale Data Analysis and Visualization 2011, LDAV 2011 – Proceedings, pp. 47-55.
  12. Lakshminarasimhan S., Jenkins J., Arkatkar I., Gong Z., Kolla H., Ku S.-H., Ethier S., Chen J., Chang C.S., Klasky S., Latham R., Ross R., Samatova N.F., (2011), ISABELA-QA: Query-driven analytics with ISABELA-compressed extreme-scale scientific data, Proceedings of 2011 SC – International Conference for High Performance Computing, Networking, Storage and Analysis, Article number 31.
  13. Jin Y., Lakshminarasimhan S., Shah N., Gong Z., Chang C.S., Chen J., Ethier S., Kolla H., Ku S.-H., Klasky S., Latham R., Ross R., Schuchardt K., Samatova N.F., (2011), S-preconditioner for multi-fold data reduction with guaranteed user-controlled accuracy, Proceedings – IEEE International Conference on Data Mining ICDM, pp. 290-299.
  14. Kumar S., Vishwanath V., Carns P., Summa B., Scorzelli G., Pascucci V., Ross R., Chen J., Kolla H., Grout R., (2011), PIDX: Efficient parallel I/O for multi-resolution multi-dimensional scientific datasets, Proceedings – IEEE International Conference on Cluster Computing, ICCC, CLUSTER 2011, pp. 103-111.
  15. Wei, J., Yu H., Grout R.W., Chen J.H., Ma K.-L., (2011), Dual space analysis of turbulent combustion particle data, IEEE Pacific Visualization Symposium 2011, PacificVis 2011 – Proceedings, pp. 91-98.
  16. Wang C., Yu H., Grout R.W., Ma K.-L., Chen J.H., Analyzing information transfer in time-varying multivariate data, IEEE Pacific Visualization Symposium 2011, PacificVis 2011 – Proceedings, pp. 96 – 106.
  17. Bennett, J, Bremer, P.T., Chen, J.H., Grout, R.W., Gruber, A., Gyulassy, A., Hawkes, E.R., Kolla, H., Pascucci, V., 2011, Conditional Analysis of DNS Combustion Data Using Local and Global Shape Characteristics, Scientific Discovery Through Advanced Computing (SciDAC) 2011 ,Denver, Colorado, USA, July 10 – 14, 2011.
  18. Spafford K., Meredith J., Vetter J., Chen J., Grout R., Sankaran R. (2010), Accelerating S3D: A GPGPU case study, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6043, pp. 122-131.
  19. Liao, W.K., Ching, A., Coloma, K., Nisar, A., Choudhary, A., Chen, J.H., Sankaran, R., Klasky, S., (2008), Using MPI file-caching to improve parallel write performance for large scale scientific applications, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC’07, Art. No. 8.
  20. Mascarenhas, A., Grout, R., Bremer, P.T., Pascucci, V., Hawkes, E.R., Chen, J.H., (2011), Topological feature extraction for comparison of lengthscales in terascale combustion simulation data, in Topological Methods in Data Analysis and Visualization; Book Series: Mathematics and Visualisation (Springer-Verlag, New York), ISBN 978-3-642-15013-5.

Contact

Sandia National Laboratories
California P.O. Box 969
Livermore, CA 94551-0969
Work Phone: (925)294-2586
Work E-mail: jhchen@sandia.gov